Please refresh the page if equations are not rendered correctly.
---------------------------------------------------------------
整理旧代码,记录一下
Json文件的读写
import json, sys
def saveToJSON(filename, dicObject):
flag = False
if type(dicObject)!=dict:
return flag
try:
j_file = open(filename,'w')
json.dump(dicObject, j_file, ensure_ascii = False)
flag = True
except:
print('往%s写数据出错'%(filename))
finally:
if flag:
j_file.close()
return flag
def GetFromJSON(filemame):
flag = False
dicObject = {}
try:
j_file = open(filename,'r')
dicObject = json.load(j_file)
flag = True
except:
print('从%s读JSON文件数据出错!'%(filename))
finally:
if flag:
j_file.close()
return dicObject
if __name__ == '__main__':
d_student = {'name':'丁丁','age':'12','birthday':'2006年12月25日'}
filename = 'student.json'
f_OK = saveToJSON(filename,d_student)
if f_OK:
print('学生信息保存到JSON文件成功!')
else:
sys.exit()
d_get_s = GetFromJSON(filename)
if d_get_s:
print(d_get_s)
npy文件
import numpy as np
import time
# 1 million samples
n_samples=1000000
# Write random floating point numbers as string on a local CSV file
with open('fdata.txt', 'w') as fdata:
for _ in range(n_samples):
fdata.write(str(10*np.random.random())+',')
# Read the CSV in a list, convert to ndarray (reshape just for fun) and time it
t1=time.time()
with open('fdata.txt','r') as fdata:
datastr=fdata.read()
lst = datastr.split(',')
lst.pop()
array_lst=np.array(lst,dtype=float).reshape(1000,1000)
t2=time.time()
print(array_lst)
print('\nShape: ',array_lst.shape)
print(f"Time took to read: {t2-t1} seconds.")
np.save('fnumpy.npy', array_lst)
t1=time.time()
array_reloaded = np.load('fnumpy.npy')
t2=time.time()
print(array_reloaded)
print('\nShape: ',array_reloaded.shape)
print(f"Time took to load: {t2-t1} seconds.")
Comments NOTHING